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Lúıs Lavoura
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atmospheric neutrino mixing, and sin2 θ¯ = 1/3 (θ¯ is the solar mixing angle). The model

features a permutation symmetry S3 among the three lepton multiplets of each type — left-

handed doublets, right-handed charged leptons, and right-handed neutrinos — and among

three Higgs doublets and three zero-hypercharge scalar singlets; a fourth right-handed

neutrino, a fourth Higgs doublet, and a fourth scalar singlet are invariant under S3. In

addition, the model has seven
�

2 symmetries, out of which six do not commute with S3.

Supersymmetry is needed in order to eliminate some quartic terms from the scalar potential,

quartic terms which would make impossible to obtain the required vacuum expectation

values of the three Higgs doublets and three scalar singlets. The Yukawa couplings to the

charged leptons are flavour diagonal, so that flavour-changing neutral Yukawa interactions

only arise at loop level.
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1. Introduction

After years of strenuous experimental efforts, physicists are now in possession of quite a lot

of good-accuracy data on the neutrino mass-squared differences and on the lepton mixing

matrix. The 3σ values derived in [1] from all existing experimental neutrino oscillation

data are

7.2 × 10−5 eV2 < ∆m2
¯ < 9.1 × 10−5 eV2, (1.1)

1.4 × 10−3 eV2 < ∆m2
atm < 3.3 × 10−3 eV2, (1.2)

0.23 < sin2 θ¯ < 0.38, (1.3)

0.34 < sin2 θatm < 0.68, (1.4)

|Ue3|2 < 0.047, (1.5)

where ∆m2
¯ ≡ m2

2 − m2
1 is the solar mass-squared difference, ∆m2

atm ≡
∣

∣m2
3 − m2

1

∣

∣ is the

atmospheric mass-squared difference, θ¯ is the solar mixing angle, θatm is the atmospheric

mixing angle, and Ue3 is one of the elements of the lepton mixing matrix U . As seen

in (1.3)–(1.5), salient features of U are:

• The solar mixing angle is large but not maximal, its sine-squared being possibly equal

to 1/3.

• The atmospheric mixing angle is large and maybe maximal, its sine-squared being

possibly equal to 1/2.

• Ue3 is small, it possibly vanishes.

– 1 –
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The Harrison-Perkins-Scott (HPS) Ansatz [2, 3] for the lepton mixing matrix incorporates

the three likely values given above: sin2 θ¯ = 1/3, sin2 θatm = 1/2, and Ue3 = 0. It states

that U = XV X ′, where X and X ′ are diagonal unitary matrices and

V = (V1, V2, V3) , V1 =
1√
6







2

−1

−1






, V2 =

1√
3







1

1

1






, V3 =

1√
2







0

−1

1






. (1.6)

Since V is an orthogonal matrix, the relations

V T
j Vk = δjk for j, k ∈ {1, 2, 3} (1.7)

hold.

It is relatively easy to devise models which simultaneously produce a maximal θatm

and a vanishing Ue3—see for instance [4, 5]. It is much more difficult to reproduce the

third feature of the HPS mixing matrix, namely sin2 θ¯ = 1/3. Some schemes or models

have recently appeared which realize HPS mixing [6 – 10]; for a review see [11]. With the

exception of [8] which uses SU(3), those models rely on an internal symmetry A4. They

use the following method, first put forward in [2]. Defining

ω ≡ exp

(

i
2π

3

)

=
−1 + i

√
3

2
, (1.8)

they try to get at

U = U`Uν = diag
(

1, ω, ω2
)

× V × diag (1, 1, −i) , (1.9)

where

U` =
1√
3







1 1 1

1 ω ω2

1 ω2 ω






(1.10)

is the unitary matrix diagonalizing the charged-lepton mass matrix, and

Uν =
1√
2







1 0 −1

0
√

2 0

1 0 1






(1.11)

is the unitary matrix diagonalizing the neutrino mass matrix.

We, on the contrary, shall produce in this paper a model wherein, in a convenient

weak basis, the charged-lepton mass matrix is already diagonal from the start, while the

neutrino mass matrix in that weak basis, Mν , is diagonalized by the HPS matrix:

V TMν V = diag
(

m1e
iϕ1 , m2e

iϕ2 , m3e
iϕ3

)

. (1.12)

Instead of A4 as internal symmetry, our model is based on an extension of S3.

– 2 –
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The basic idea behind our model is the following. Suppose that one has a seesaw

mechanism [12, 13], with a neutrino Majorana mass matrix of the form

MD+M =

(

0 MT
D

MD MR

)

(1.13)

producing an effective light-neutrino mass matrix

Mν = −MT
DM−1

R MD. (1.14)

Suppose that the neutrino Dirac mass matrix MD and the right-handed-neutrino Majorana

mass matrix MR are of the form

MD = a�, MR = µ0� + µ1A + µ2B, (1.15)

with complex parameters a and µ0,1,2, and

A =







0 1 1

1 0 1

1 1 0






, B =







0 0 0

0 1 −1

0 −1 1






. (1.16)

(In (1.15) and throughout this paper, the unit matrix � is always 3 × 3.) Equation (1.15)

should be understood as holding in the weak basis where the charged-lepton mass ma-

trix is diagonal, as already stated before. Now, V diagonalizes MR, because V1,2,3 are

simultaneous eigenvectors of A and B:

MRV1 = (µ0 − µ1)V1, (1.17)

MRV2 = (µ0 + 2µ1) V2, (1.18)

MRV3 = (µ0 − µ1 + 2µ2)V3, (1.19)

V T MR V = diag (µ0 − µ1, µ0 + 2µ1, µ0 − µ1 + 2µ2) . (1.20)

Since MD ∝ � commutes with V , one obtains that in this case U is equal to V times a

diagonal unitary matrix, the light-neutrino masses being

m1 =

∣

∣

∣

∣

a2

µ0 − µ1

∣

∣

∣

∣

, m2 =

∣

∣

∣

∣

a2

µ0 + 2µ1

∣

∣

∣

∣

, m3 =

∣

∣

∣

∣

a2

µ0 − µ1 + 2µ2

∣

∣

∣

∣

. (1.21)

One thus reproduces HPS mixing.

In section 2 of this paper we present our model: its field content, internal symmetries,

and lagrangian. In section 3 we assume a definite form for the VEVs of some scalar fields

of our model and therefrom derive that the lepton mixing matrix is of the HPS form. In

section 4 we show that the scalar potential of the model is capable of producing VEVs of

the desired form. We present our conclusions in section 5.
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2. The model

Next we incorporate the idea at the end of the previous section into a model. It turns

out that the model has to be supersymmetric;1 the argument for this will be given in

section 4. However, for convenience and transparency, we shall use, wherever possible, a

non-supersymmetric notation.

Fermions: For α = e, µ, τ , three left-handed lepton doublets DLα, three right-handed

charged leptons αR, and four right-handed neutrinos νRα and NR.

Scalars: For α = e, µ, τ , three Higgs doublets φα with hypercharge +1; furthermore,

one Higgs doublet φν with hypercharge −1;2 also, four complex singlets of SU(2) with zero

hypercharge: χα and S.

Discrete symmetries:

• One permutation group S3, effecting simultaneous permutations of the DLα, αR, νRα,

φα, and χα.

• Three
�

2 symmetries

zα : DLα → −DLα, αR → −αR, νRα → −νRα, χα → −χα. (2.1)

Notice that φα does not change sign under zα. The symmetries zα may be interpreted

as being discrete lepton numbers.

• Three
�

2 symmetries

zh
α : αR → −αR, φα → −φα. (2.2)

The zh
α are meant to ensure that the φβ with β 6= α have no Yukawa couplings to

αR.

• One
�

2 symmetry

zχ : NR → −NR, χe → −χe, χµ → −χµ, χτ → −χτ . (2.3)

Notice that the scalar singlet S is invariant under all these symmetries. The need for this

singlet S will be explained in section 4, just as the need for the symmetry zχ.

1We assume R-parity invariance, just as in the minimal supersymmetric extension of the Standard Model.
2In supersymmetry, in order to cancel anomalies, one needs [14] an equal number of Higgs doublets with

hypercharges +1 and −1. Hence we must add to our model two more Higgs doublets with hypercharge −1.

This addition is inconsequential, though, provided all Higgs doublets with hypercharge −1 behave under

the internal symmetries in the way φν does.

– 4 –
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Yukawa lagrangian: The multiplets and symmetries of the theory lead to the Yukawa

lagrangian

LY = −y
∑

α

D̄LαφααR − y′
∑

α

D̄LαφννRα

+
y∗χ
2

∑

α

χ∗
α

(

νT
RαC−1NR + NT

RC−1νRα

)

+
y∗S
2

∑

α

S∗νT
RαC−1νRα +

y∗N
2

S∗NT
RC−1NR + H.c. (2.4)

We avoid writing down terms like S
∑

α νT
RαC−1νRα and S NT

RC−1NR since the model is

meant to be supersymmetric, hence S and S∗ are not equivalent. The absence from LY

of terms like
∑

α,β AαβD̄LαφννRβ and
∑

α,β Aαβχ∗
αNT

RC−1νRβ is justified by the “discrete

lepton number” symmetries zα, which are allowed to be broken only softly (see below).

Charged-lepton masses: The three different charged-lepton masses mα are generated

by the three different vacuum expectation values (VEVs) vα ≡ 〈0
∣

∣φ0
α

∣

∣ 0〉. One has mα =

|yvα|. The charged-lepton mass matrix is diagonal as a consequence of the symmetries zα.

Symmetry breaking:

• S3 is broken softly, by terms of dimension 2 but not by terms of dimension 3, to its

subgroup S2, the µ–τ interchange symmetry. This S2 is broken only spontaneously.

• The zα are broken softly by terms both of dimension 3 and of dimension 2. In

particular, they are broken by the bare Majorana masses of the νRα, see (2.5) below.

This soft breaking by the Majorana masses corresponds to the soft breaking of the

family lepton numbers in the models of [4, 15].

• The zh
α are broken softly by terms both of dimension 3 and of dimension 2. In

particular, they are broken by the term φν

∑

α φα in the scalar potential, see (2.6)

below.

• zχ is broken only spontaneously.

Mass lagrangian: There are three Majorana mass terms for the right-handed neutrinos

allowed by the symmetries and their breaking; the corresponding mass lagrangian is

LM =
µ∗

0

2

∑

α

νT
RαC−1νRα +

µ∗
1

2

∑

α,β

Aαβ νT
RαC−1νRβ +

m∗
N

2
NT

RC−1NR + H.c. (2.5)

The matrix A is given in (1.16). The second term breaks softly all three zα. Notice that

we allow S3 to be broken softly by terms of dimension 2, but not by terms of dimension

3; else the second term in (2.5) would be more general. Majorana mass terms of the type

NT
RC−1νRα are forbidden by zχ, which is not allowed to be broken in the lagrangian.

In the supersymmetric theory, (2.5) must be interpreted as part of the superpotential,

and gives rise to both dimension-3 and dimension-2 terms.

– 5 –
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Superpotential: Let us denote the superfield versions of χα, S, φα, and φν by χ̂α, Ŝ, φ̂α,

and φ̂ν , respectively. Then the part of the superpotential relevant for the scalar potential

is

W = µφ̂ν

∑

α

φ̂α + µ′
∑

α

χ̂αχ̂α + µ′′
∑

α,β

Aαβχ̂αχ̂β + µ′′′ŜŜ (2.6)

+ λŜ
∑

α

χ̂αχ̂α + λ′ŜŜŜ. (2.7)

The symmetry zχ forbids odd powers of the fields χ̂α. The symmetries zh
α forbid a term

Ŝ φ̂ν

∑

α φ̂α. Equation (2.6) gives rise to both dimension-2 and dimension-3 terms; (2.7)

yields dimension-3 and dimension-4 terms.

3. Lepton mixing

We denote the VEV of φν by v and the VEVs of the χα by wα. We define a = y′∗v∗, and

the 1 × 3 row matrix

M = yχ (we, wµ, wτ ) . (3.1)

Then, the 7 × 7 neutrino Majorana mass matrix, in the basis [νLα, (νRα)c , (NR)c], is

MD+M =







03×3 a� 03×1

a� µ̄0� + µ1A MT

01×3 M m̄N






, (3.2)

where µ̄0 ≡ µ0 + ySs and m̄N ≡ mN + yNs, s being the VEV of S. The size of the zero

matrices is indicated as a subscript. Comparing (3.2) with (1.13) gives

MR =

(

µ̄0� + µ1A MT

M m̄N

)

and MD =

(

a�
01×3

)

. (3.3)

In order to obtain the HPS mixing matrix we must now make the following crucial

assumption about the VEVs of the χα:

we = 0, wµ = −wτ ≡ w. (3.4)

In the next section we shall discuss the conditions under which these relations can be

obtained. With (3.4) we may write

M = (0, m, −m) , where m = yχw. (3.5)

What is the idea behind this construction? First suppose that in the MR of (3.3) the

entry m̄N is much larger than all other entries. Then, there is a seesaw mechanism within

the 4 × 4 matrix MR itself, generating an effective 3 × 3 matrix µ̄0� + µ1A − MT M /m̄N ,

which is exactly of the form proposed in (1.15) provided M is of the form in (3.5). Next let

us admit that m̄N is not much larger than the other entries of MR; we shall demonstrate

in the rest of the present section that HPS mixing is realized even in that general case.

– 6 –
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We define the vectors

Wj =

(

Vj

0

)

for j = 1, 2, 3, W4 =

(

03×1

1

)

, (3.6)

and the real orthogonal matrix W = (W1, W2, W3, W4). We compute

W T MR W =











µ̄0 − µ1 0 0 0

0 µ̄0 + 2µ1 0 0

0 0 µ̄0 − µ1 −
√

2m

0 0 −
√

2m m̄N











. (3.7)

We diagonalize the 2 × 2 submatrix of W TMR W as

KT

(

µ̄0 − µ1 −
√

2m

−
√

2m m̄N

)

K =

(

m̄3 0

0 m̄4

)

, (3.8)

where K is a 2 × 2 unitary matrix and m̄3,4 are real and non-negative. It is convenient to

denote the indices of K by 3 and 4:

K =

(

K33 K34

K43 K44

)

. (3.9)

Then one has

M−1
R =

1

µ̄0 − µ1
W1W

T
1 +

1

µ̄0 + 2µ1
W2W

T
2

+
1

m̄3
(K33W3 + K43W4)

(

K33W
T
3 + K43W

T
4

)

+
1

m̄4
(K34W3 + K44W4)

(

K34W
T
3 + K44W

T
4

)

(3.10)

and

Mν = − a2

µ̄0 − µ1
V1V

T
1 − a2

µ̄0 + 2µ1
V2V

T
2 − a2

[

(K33)
2

m̄3
+

(K34)
2

m̄4

]

V3V
T
3 . (3.11)

This is just of the desired form. We have obtained an (indirect) realization of the idea in

section 1.

4. The scalar sector and the VEVs

Recall the features of the VEVs that our model requires:

• The VEVs vα of the φα must be all different in order that the charged-lepton masses

are all different.

• The VEVs wα of the χα must obey (3.4) in order to obtain the matrix B of (1.16) in

MR.

– 7 –
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Now suppose that our model was not supersymmetric. Then, in the scalar potential,

terms like
(

φ†
eφe

)

|χe|2 +
(

φ†
µφµ

)

|χµ|2 +
(

φ†
τφτ

)

|χτ |2 ,
(

φ†
µφµ + φ†

τφτ

)

|χe|2 +
(

φ†
eφe + φ†

τφτ

)

|χµ|2 +
(

φ†
eφe + φ†

µφµ

)

|χτ |2
(4.1)

would be unavoidable. Once all the vα are different, terms like the ones in (4.1) force

the wα to be all different too (unless they all vanish, which is not what we want). This

means that terms of dimension 4 in the scalar potential which contain simultaneously the

Higgs doublets and the χ singlets must be forbidden. The only way to do this seems to be

supersymmetry (SUSY). In SUSY the scalar potential has three contributions:

• the D terms from the gauge interactions,

• the F terms from the superpotential W , and

• soft SUSY-breaking terms, which are of dimension less than 4.

The χ fields have no D terms since they are gauge singlets with hypercharge zero. In

the superpotential W , the symmetries of our model do not allow terms with products of

χ fields and Higgs doublets. Therefore, once our model has been supersymmetrized, its

scalar potential has no unwanted dimension-4 terms.

The symmetry zχ in our model is necessary in order to forbid terms like

(

φ†
eφe

)

χe +
(

φ†
µφµ

)

χµ +
(

φ†
τφτ

)

χτ , (4.2)

which would also be dangerous. Unfortunately, zχ also forbids cubic χα terms in the

superpotential W ; this absence has as a consequence the absence of quartic χα terms in

scalar potential. Hence, we have to introduce the scalar field S in order to allow for the

first term in (2.7), which gives then rise to a quartic χα term in the scalar potential.

The scalar potential of our supersymmetric model is a sum V = VS + VφS + VχS ,

where VS is a functions of S alone, VφS contains the pure Higgs doublet terms and the

mixed S-Higgs doublet terms, and analogously for VχS . The full separation of VφS from

VχS allows us to achieve completely different forms for the VEVs of the φ doublets and χ

singlets. This is a crucial feature of our model.

4.1 The VEVs of the χα

The terms in the superpotential containing the fields χ̂α,

(

µ′ + λŜ
)

(χ̂eχ̂e + χ̂µχ̂µ + χ̂τ χ̂τ ) + 2µ′′ (χ̂eχ̂µ + χ̂eχ̂τ + χ̂µχ̂τ ) , (4.3)

lead in VχS to the following quadratic terms:

|χe|2 + |χµ|2 + |χτ |2 ,

Re
(

χ∗
eχµ + χ∗

eχτ + χ∗
µχτ

)

.
(4.4)

– 8 –
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These may be added to the soft-breaking terms, which are more general anyway. But (4.3)

also leads to a quartic term

λ2
∣

∣

∣
(χe)

2 + (χµ)2 + (χτ )
2
∣

∣

∣

2
(4.5)

which is crucial, since without this term the potential for the χ fields would be purely

quadratic and all those fields would then be forced to have vanishing VEVs. This is the

crucial role played by Ŝ in our model.

Let us now consider how VχS depends on the χ fields.3 The symmetry zχ, which is

broken only spontaneously, forces VχS to contain only quadratic and quartic terms on the

χ fields. The symmetry S3 is broken softly, in the quadratic terms, to the µ–τ interchange

symmetry. Hence, if one defines F (we, wµ, wτ ) ≡ 〈0 |VχS| 0〉, then one has

F = p |we|2 + q
(

|wµ|2 + |wτ |2
)

+ 2 r Re
(

w∗
µwτ

)

+ 2Re [t w∗
e (wµ + wτ )]

+2Re
[

P w2
e + Q

(

w2
µ + w2

τ

)

+ R wµwτ + T we (wµ + wτ )
]

+λ2
∣

∣w2
e + w2

µ + w2
τ

∣

∣

2
. (4.6)

The coefficients p, q, and r are real, all other coefficients are in general complex. The coef-

ficients of the terms quadratic in the wα all contain some contributions including the VEV

s of the field S, but it is useless, for our purposes, to explicitly consider that dependence.

The extremum conditions are

0 =
∂F

∂w∗
e

= p we + t (wµ + wτ ) + 2P ∗w∗
e + T ∗

(

w∗
µ + w∗

τ

)

+ 2λ2 w∗
e

(

w2
e + w2

µ + w2
τ

)

,

(4.7)

0 =
∂F

∂w∗
µ

= q wµ + r wτ + t∗ we + 2Q∗ w∗
µ + R∗ w∗

τ + T ∗ w∗
e + 2λ2 w∗

µ

(

w2
e + w2

µ + w2
τ

)

,

(4.8)

0 =
∂F

∂w∗
τ

= q wτ + r wµ + t∗ we + 2Q∗ w∗
τ + R∗ w∗

µ + T ∗ w∗
e + 2λ2 w∗

τ

(

w2
e + w2

µ + w2
τ

)

.

(4.9)

The desired solution of these equations is given in (3.4). Remarkably, that Ansatz auto-

matically solves (4.7), while (4.8) and (4.9) both lead to

(q − r)w + (2Q∗ − R∗)w∗ + 4λ2 |w|2 w = 0. (4.10)

Writing w = w0e
iφ with w0 > 0, the relevant solution of (4.10) is

w2
0 =

r − q − ε |2Q − R|
4λ2

, e2iφ = ε e−i arg(2Q−R), (4.11)

where ε = ±1.

3The dependence on the singlet S is irrelevant for our purposes, since we are only interested in seeing

whether it is possible to obtain the desired VEVs for the χα.

– 9 –
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Now the question is whether the above solution of the extremum conditions is a local

minimum of F . To check this, write

we = eiφδe, wµ = w + eiφδµ, wτ = −w + eiφδτ , (4.12)

where the factors eiφ have been inserted for convenience. Collect all the terms of F which

are quadratic on the δα:

F2 (δ) = p |δe|2 + q
(

|δµ|2 + |δτ |2
)

+ 2 r Re
(

δ∗µδτ

)

+ 2Re [t δ∗e (δµ + δτ )]

+2Re
[

P ′ δ2
e + Q′

(

δ2
µ + δ2

τ

)

+ R′ δµδτ + T ′ δe (δµ + δτ )
]

+4λ2w2
0

[

Re
(

δ2
e + δ2

µ + δ2
τ

)

+ |δµ − δτ |2
]

, (4.13)

where we have defined P ′ ≡ Pe2iφ, etc. One has to show that F2 (δ) is a positive quadratic

form in the six variables Re δα and Im δα, α = e, µ, τ . One has first to insert into (4.13)

the w2
0 of (4.11). Considering δe alone, the parameter p may be assumed positive and as

large as necessary for positive definiteness. Then setting δe = 0 and R = 0, one has

F2 (δe = 0, R = 0) =
(

Re δµ, Re δτ

)

(

2r − q − 2ε |Q| q + 2ε |Q|
q + 2ε |Q| 2r − q − 2ε |Q|

)(

Re δµ

Re δτ

)

+
(

Im δµ, Im δτ

)

(

q − 2ε |Q| q + 2ε |Q|
q + 2ε |Q| q − 2ε |Q|

)(

Im δµ

Im δτ

)

. (4.14)

The positivity conditions for the second 2 × 2 matrix are ε = −1 and q > 0. The first

2 × 2 matrix produces the conditions r > 0 and r > q − 2 |Q|. Since the eigenvalues of a

quadratic form are continuous functions of its parameters, switching on R will leave the

eigenvalues positive provided |R| is not too large. We have thus proved that there is a

region of parameters of the potential for which there is a local minimum of the form (3.4).

4.2 The VEVs of the φα

In the case of the doublets φα, the F terms from the superpotential (2.6) only provide

terms quadratic in the scalar components. This is not problematic, though, because there

are in this case quartic D terms

VD =
g2

8

3
∑

i=1

[

∑

α

(

φ†
ατiφα

)

+ φ†
ντiφν

]2

+
g′2

8

[

∑

α

(

φ†
αφα

)

− φ†
νφν

]2

, (4.15)

(the τi are the Pauli matrices) which yield

〈0 |VD| 0〉 =
g2 + g′2

8

(

|ve|2 + |vµ|2 + |vτ |2 − |v|2
)2

. (4.16)

Given the freedom in the soft SUSY-breaking parameters, which are subject only to the

constraint of breaking S3 to the µ–τ interchange symmetry, there is enough freedom to
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adjust the VEVs ve and v. It is sufficient for our purposes to consider the VEVs vµ and

vτ . One has to minimize a function with the structure

G (vµ,τ ) = 2Re [f (vµ + vτ )] + b
(

|vµ|2 + |vτ |2
)

+ 2 cRe
(

v∗µvτ

)

+ d
(

|vµ|2 + |vτ |2
)2

, (4.17)

where d =
(

g2 + g′2
)

/8 as seen before. The term f (vµ + vτ ) comes from soft SUSY-

breaking terms of the form φ†
ν,e (φµ + φτ ); f is in general complex.

We want to show that it is possible to obtain VEVs vµ and vτ different from each other;

this is somehow the opposite of what was needed for the χα. Without loss of generality we

use the parameterization

vµ = u cos σ, vτ = (u sin σ) eiθ (u > 0, 0 < σ < π/2, θ ∈ �) (4.18)

and obtain

G = 2u [cos σ Re f + sin σ |f | cos (θ + arg f)] + bu2 + 2cu2 cos σ sin σ cos θ + du4. (4.19)

Since we only have to demonstrate that vµ 6= vτ is possible, we are allowed to use some

simplifying assumptions. For f real and positive and c > 0, minimizing G with respect to

θ yields θ = π. Then one has

∂G

∂σ

∣

∣

∣

∣

θ=π

= −2u (cos σ + sin σ) [f + cu (cos σ − sin σ)] = 0. (4.20)

We see that vµ 6= vτ provided f 6= 0:

sin σ − cos σ =
f

cu
. (4.21)

In order to achieve |vµ| ¿ |vτ |, i.e. cos σ ¿ sinσ, a finetuning is necessary: f ' cu.

5. Conclusions

In this paper we have constructed a model which realizes the Harrison-Perkins-Scott lepton

mixing matrix. Our model is a supersymmetric extension of an extended Standard Model,

based on the internal symmetry group S3 and on seven
�

2 symmetries, out of which six

do not commute with S3;
4 three of these

�
2 symmetries have a natural interpretation as

discrete family lepton numbers. The group S3 simply permutes the families α = e, µ, τ and

easily allows to describe the particle content of our model. We have the left-handed lepton

doublets (DLα) and the right-handed charged-lepton singlets (αR), just as in the Standard

Model; furthermore, there are four right-handed neutrino singlets (νRα, NR), four Higgs

doublets (φα, φν), and four scalar singlets with hypercharge zero (χα, S); the fields NR, φν ,

and S are not affected by S3. Superpartners have to be supplied to all the fields above.

The following mechanisms are of importance for our model:

4In other words, the actual symmetry group is generated by the S3 and six �2 symmetries, and is thus

much larger than S3.
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• For the generation of each of the three charged-lepton masses mα we need a separate

Higgs doublet; the different values of the three mα are produced by the different

VEVs vα of the Higgs doublets. In this way, the charged-lepton mass matrix is

automatically diagonal.

• The seesaw mechanism is responsible for the smallness of the neutrino masses.

• Lepton mixing originates in the mass matrix MR of the right-handed neutrino singlets.

In order to obtain the desired structure of MR, we need the S3 invariance, soft

breaking of the discrete lepton numbers in the νR Majorana mass terms, and the

special relation (3.4) among the VEVs wα of the scalar singlets χα.

• SUSY and the
�

2 symmetry zχ of (2.3) forbid terms in the scalar potential which

would destroy the relation (3.4); SUSY is crucial for an adequate separation of the

Higgs-doublet terms from the scalar-singlet terms in the scalar potential, such that

we achieve three different VEVs vα while the wα fulfill the relation (3.4).

• A further mechanism to obtain the desired VEVs is the soft breaking of S3 down to

S2, the µ–τ interchange symmetry, by terms of dimension 2.

We have taken care to demonstrate that the VEV configuration required to obtain HPS

mixing corresponds to a local minimum of the scalar potential.

In our model the neutrino masses and the Majorana phases are free, in contrast to

lepton mixing which is completely fixed by construction. In this sense, the present model

realizes a decoupling of the mixing problem from the mass problem; the latter is beyond

the scope of the present model.

Since the charged-lepton mass matrix is diagonal, flavour-changing neutral Yukawa

interactions are absent at tree level in the charged-lepton sector. However, such interactions

appear at the one-loop level [17]. The specific nature of the lepton-flavour violation makes

µ± → e±γ unmeasurably small, but µ± → e±e+e− is possibly in the range of future

experiments [17].

The symmetries invoked to enforce the HPS mixing scheme hold at the seesaw scale.

Thus, the renormalization group evolution down to the weak scale will introduce corrections

to the HPS mixing angles. However, it is well known that such corrections can only be

sizeable for a quasi-degenerate neutrino mass spectrum [18, 19]. This was confirmed in [20]

by the consideration of general perturbations of a µ–τ symmetric neutrino mass matrix. In

any case, a first test of the HPS scheme will be performed with the near-future experiments

planned for measuring |Ue3|—for a review and assessment of these experiments see [21].

The model presented here uses an intricate interplay of symmetries and mechanisms;

a good part of this expenditure is used for stabilizing the desired VEVs. Our model is not,

though, unduly complicated when compared to other models which produce HPS mixing.

This lets us wonder whether HPS mixing is actually realized in Nature through symmetries

or it simply comes about by accident. Anyway, the present model is the simplest one that

we could construct which realizes the basic idea delineated in equations (1.13)–(1.21) of

section 1.
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